Coagulopathy of COVID-19

Sargam Kapoor, MD
Hematology Oncology
Alaska Native Medical Center

COVID-19: A global crisis

Objectives

To describe the hypercoagulable state in COVID-19

To discuss the pathophysiology of the prothrombotic milieu

 To provide guidance on use of D-dimer and anticoagulation prophylaxis and treatment

Risk of thrombosis in pneumonia/ ARDS

- Venous thromboembolism (VTE) risk is increased in pneumonias
- Associations noted with SARS-CoV-1 and MERS-CoV
- Risk factors: immobility, mechanical ventilation, central venous access devices, inflammation and infection

Evidence for a hypercoagulable state in COVID-19

- D-dimer as a poor prognostic marker was first brought to notice by Zhou et al (Lancet, March 9th, 2020)
- DIC in COVID-19 patients more frequent in non-survivors (71%) than survivors (0.6%)
- Initially considered a prognostic parameter, warranting enhanced vigilance
- Hypothesis that DIC may not be a concomitant finding but more a pathophysiological process contributing to circulatory and organ failure, especially pulmonary damage

Coagulation parameters in COVID-19

Parameters	Normal range	Total (n=183)	Survivors (n=162)	Non-survivors (n=21)	p value
PT (sec)	11.5-14.5	13.7 (13.1- 14.6)	13.6 (13.0- 14.3)	15.5 (14.4- 16.3)	<0.001
aPTT (sec)	29.0-42.0	41.6 (36.9- 44.5)	41.2 (36.9- 44.0)	44.8 (40.2- 51.0)	0.096
Fibrinogen (g/L)	2.0-4.0	4.55 (3.66- 5.17)	4.51 (3.65- 5.09)	5.16 (3.74- 5.69)	0.149
D-dimer (μg/mL)	<0.5	0.66 (0.38- 1.50)	0.61 (0.35- 1.29)	2.12 (0.77- 5.27)	<0.001
FDP (μg/mL)	<5.0	4.0 (4.0-4.9)	4.0 (4.0-4.3)	7.6 (4.0-23.4)	<0.001
AT (%)	80-120	91 (83-97)	91 (84-97)	84 (78-90)	0.096

What is a D-dimer?

Generation of D-dimer from cross-linked fibrin

Location (first author)	Sample size	D-dimer cut-off for risk assessment	Outcome of interest
Wuhan, China (Zhou et al)	191	> 1mcg/ml	Mortality
Wuhan, China (Yao et al)	248	>2.14 mg/L	Mortality
Wuhan, China (Zhang et al)	343	>2 mcg/ml	Mortality
Wuhan, China (Tang et al)	183	N/A (continuous variable)	Mortality
Mainland China (Guan et al)	1099	N/A (continuous variable)	Severe disease; Primary composite endpoint was admission to ICU/ mechanical ventilation or death
Wuhan, China (Huang et al)	41	N/A (continuous variable)	ICU admission
Wuhan, China (Wang et al)	138	N/A (continuous variable)	ICU admission
Wuhan, China (Wu et al)	201	N/A (continuous variable)	ARDS; mortality
Milan, Italy (Lodigiani et al)	388	N/A (continuous variable)	ICU; mortality
Beijing, China (Cui et al)	81	>1.5 mcg/ml	VTE
Strasbourg, France (Leonard- Lorant et al)	106	>2660 mcg/L	Pulmonary embolism

High Risk of Thrombosis in Patients with Severe SARS-CoV-2 Infection

- 4 ICUs at 2 centers in France
- 150 patients (122 males, median age 63), all received anticoagulation (70% prophylactic, 30% therapeutic)
- 64 clinically relevant thrombotic complications
 - 16.7% Pulmonary Embolism
 - 28/29 (96.6%) clotting CRRT circuits
 - 3 thrombotic occlusions of ECMO circuits in 2/12 patients
 - 15% stroke on CT/MRI; 1 acute limb ischemia, 1 mesenteric ischemia
- COVID ARDS (n=77) vs. non-COVID ARDS (n=145)
 - PE: 11.7% vs 2.1% OR 6.2 (1.6-23.4) p<0.008
 - VTE: 11.7% vs 4.6% OR 2.6 (1.1-6.1) p=0.035

Helms et al. Intensive Care Medicine, May 2020

High incidence of VTE despite thromboprophylaxis

- 198 hospitalized patients, 38% direct ICU admissions
- ALL patients received VTE prophylaxis, weight adjusted (100kg)
- Cumulative incidence of symptomatic VTE:

Day 7: 10% (85% CI 5.8-16)

Day 14: 21% (95% CI 14-30)

Day 21: 25% (95% CI 16-36)

Middledorp et al. JTH 2020

Anticoagulation = Improved outcomes

- 2,773 hospitalized patients in NY
- In hospital mortality 29% on anticoagulation vs 62% without anticoagulation in the mechanically ventilated patients
- Major bleeding 3% versus 1.9%

Paranjpe et al. JACC May 6th, 2020

Anticoagulation = Improved outcomes

ALASKA NATIVE

Location (first author)	Type of study	Sample size	Use of thromboprophylaxis	VTE incidence	Arterial thrombosis incidence
Wuhan, China (Cui et al)	Retrospective; hospitalized patients	81	No	VTE 25%; all lower extremity thrombi	None
Netherlands (Klok et al)	Retrospective; multicenter; hospitalized patients	184	Yes (nadroparin at different doses)	VTE (n=28) 27%; of those PE (n=25) was most common finding in 81%	Ischemic strokes (n=3) 3.7%
Netherlands (Middeldorp et al)	Retrospective; single center; hospitalized patients	198	Yes (nadroparin 2850 units daily for <100 kg and 5700 units daily for >100 kg)	7-day incidence of VTE (15%) and 14-day incidence of VTE (34%)	None
Italy (Lodigiani et al)	Retrospective; single center; hospitalized patients	388	Yes (LMWH) Ward: 75% used (41% prophylactic dose, 21% intermediate dose; 23% therapeutic dose) ICU: 100% used	VTE 21% (cumulative rate) ICU 27.6% and general ward 6.6%	Ischemic stroke 2.5% and ACS/MI 1.1%
France (Llitjos et al)	Retrospective study; 2 ICUs	26	Yes (31% with prophylactic dose and 69% with therapeutic dose)	VTE 69%	None
France (Helms et al)	Prospective study; COVID-19 ARDS patients at 4 ICUs in 2 centers	150	Yes (LMWH)	PE 16.7%; DVT 2%	Ischemic stroke 1.3%; limb ischemia 0.7%; mesenteric ischemia 0.7%
France (Poissy et al)	Retrospective case series; ICU	107	Yes	PE (20.6%)	None
Netherlands (Beun et al)	Retrospective; ICU	75	Unknown	PE (26.6%; 21.3% subsegmental and 5.3% central); DVT 4%	Ischemic stroke 2.7%

Post-mortem evidence of thrombosis in COVID-19

Wichmann De et al. Annal Int Med 2020

Increased incidence of arterial thrombosis

- Arterial events occur as well
- 5 patients (<50 years) presented with sudden large vessel strokes
- Klok FA et al. VTE 27% and 3.7 % arterial events

Oxley TJ et al. NEJM April 28 2020 KLok et al. Thromb Res, 2020 Bellosta et al. J Vasc Surg. 2020 Apr 29 Qian e al. JCVA. doi:10.1053/j.jcva.2020.03.063

Increased incidence of arterial thrombosis

Location (first author)	Type of study	Sample size	Use of thromboprophylaxis (Yes/No/Unknown; drug used, if any)	Arterial thrombosis incidence (w/ type or site)
New York, USA (Oxley et al)	Case series	5	No	Ischemic stroke 5 young patients in 2 week period
Beijing, China (Zhang et al)	Case series	3	Unknown	Ischemic strokes in 3 patients
Italy (Bellosta et al)	Observational cohort study	20	25% were on anticoagulation at baseline due to atrial fibrillation	Acute limb ischemia in 20 patients (16.3%)

Microvascular thrombosis

Pulmonary

Renal

Dermal microvasculature

Magro et al. Transl Res. 2020 April 15 Su H et al. Kidney Int. April 9 2020 Ackermann M et al. NEJM 2020

Pathophysiology of hypercoagulable state in COVID-19

SARS-CoV-2 uses ACE2 for cell entry

ACE2 expression is ubiquitous

ACE receptor well described					
Type II pneumocytes					
Enterocytes of small bowel					
Nasal and oral mucosa					
Kidney					
Myocardium					
Smooth muscle cells and endothelium of vessels					

Lukassen S, et al. EMBO 2020

Physiologic role of endothelium

Blood (2019) 133 (9): 906-918

1. Endotheliitis is an early process leading to thrombosis

2. Hyperinflammation in severe COVID-19 leads to immunothrombosis

Siddiqui et al. JHLT May 2020

The lung as the epicenter of COVID-19 induced coagulopathy

Crit Care Med. 2020 May 27; 1097/CCM

3. Complement activation in COVID-19

Risitano et al Nat Rev Immun. 20, 343-344 2020

Complement-mediated microvascular injuries

Pulmonary

Dermal

Normal adjacent muscle

C5b-9 deposition

Magro et al. Transl Res. 2020 April 15

4. Dysregulated renin-angiotensin (RAS)

Vaduganathan et al. NEJM 382"1653-1659

Management: Current guidelines

- ASH (Expert Panel)
- ISTH
- Recommendations are to give prophylactic anticoagulation to all patients (medical, surgical and obstetric) that are admitted with COVID-19.
- Intermediate dose and therapeutic AC in ICU patients is controversial
- Paucity of high quality data; individual institutional protocols have gone into effect.

Management

- For patients already on DOACs:
- Continue DOACs as outpatient
- Switch to shorter acting parenteral agents if admitted due to clinical status
- Important to note significant drug interactions of DOACs with some of the treatments for COVID-19

Management: post discharge

- Routine post-discharge VTE prophylaxis not recommended
- Certain high-risk populations:
 - Modified IMPROVE-VTE score ≥ 4 OR
 - Modified IMPROVE-VTE score >2 and D-dimer >2X normal OR
 - Age >60 years, D-dimer >2 times normal, and previous VTE or cancer
- Also consider individual patient risk factors, mobility, bleeding risks

Outpatient management of mild COVID-19

- No routine VTE prophylaxis is recommended
- Case by case discussion of the high risk patients should again be considered

IMPROVE RISK SCORE

VTE risk factor	VTE risk score
Previous VTE	3
Known thrombophilia ^a	2
Current lower limb paralysis or paresis ^b	2
History of cancer ^c	2
ICU/CCU stay	1
Complete immobilization ^d ≥ 1 d	1
Age ≥60 y	1

Abbreviations: CCU, cardiac care unit; ICU, intensive care unit; IMPROVE, International Medical Prevention Registry on Venous Thromboembolism; NIH, National Institutes of Health; VTE, venous thromboembolism.

- >4 OR
- 2-3 with D-dimer \geq 2 X ULN

Spyropolous et al. TH Jan 2020

^aA congenital or acquired condition leading to excess risk of thrombosis (e.g., factor V Leiden, lupus anticoagulant, factor C or factor S deficiency). ^bLeg falls to bed by 5 seconds, but has some effort against gravity (taken from NIH stroke scale).

^cCancer (excluding nonmelanoma skin cancer) present at any time in the past 5 years (cancer must be in remission to meet eligibility criteria).

^dImmobilization is being confined to bed or chair with or without bathroom privileges.

Management: Testing

- All inpatients admitted with COVID-19 should get the following tests daily:
- CBC with diff
- PT, INR, PTT
- D-dimer
- Fibrinogen

Institutional protocols are based on D-dimer levels

ANMC COVID19 Thromboprophylaxis Guidelines (5.14.2020)

Please consult hematology for any questions

A NATIVE L**HEALTH** ORTIUM **THANK YOU!**

QUESTIONS?

