Comprehensive Energy Audit
For
Tununak Tribal Office

Prepared For
Native Village of Tununak

June 11, 2012

Prepared By:
ANTHC-DEHE
1901 Bragaw Suite, Suite 200
Anchorage, Alaska 99508
Table of Contents

1. EXECUTIVE SUMMARY .. 3
2. AUDIT AND ANALYSIS BACKGROUND .. 4
 2.1 Program Description ... 4
 2.2 Audit Description ... 4
 2.3. Method of Analysis .. 5
 2.4 Limitations of Study ... 7
3. Tununak Tribal Office ... 7
 3.1. Building Description ... 7
 3.2 Predicted Energy Use .. 8
 3.2.1 Energy Usage / Tariffs ... 8
 3.2.2 Energy Use Index (EUI) ... 10
 3.3 AkWarm® Building Simulation .. 11
4. ENERGY COST SAVING MEASURES .. 12
 4.1 Summary of Results ... 12
 4.2 Interactive Effects of Projects .. 13
5. ENERGY EFFICIENCY ACTION PLAN ... 15
Appendix A – Listing of Energy Conservation and Renewable Energy Websites .. 15

PREFACE
The Energy Projects Group at the Alaska Native Tribal Health Consortium (ANTHC) prepared this
document for the Native Village of Tununak. The authors of this report are Carl Remley,
Certified Energy Auditor (CEA) and Gavin Dixon.

The purpose of this report is to provide a comprehensive document that summarizes the
findings and analysis that resulted from an energy audit conducted over the past couple
months by the Energy Projects Group of ANTHC. This report analyzes historical energy use and
identifies costs and savings of recommended energy efficiency measures. Discussions of site
specific concerns and an Energy Efficiency Action Plan are also included in this report.

ACKNOWLEDGMENTS
The Energy Projects Group gratefully acknowledges the assistance of James James, Tribal
Administrator and the clinic staff.
1. EXECUTIVE SUMMARY

This report was prepared for the Native Village of Tununak. The scope of the audit focused on Tununak Tribal Office. The scope of this report is a comprehensive energy study, which included an analysis of building shell, interior and exterior lighting systems, HVAC systems, and plug loads.

Based on electricity and fuel oil prices in effect at the time of the audit, the annual predicted energy costs for the buildings analyzed are $1,016 for Electricity and $9,797 for #1 Oil. The total energy costs are $10,813 per year.

It should be noted that this facility received the power cost equalization (PCE) subsidy from the state of Alaska last year. If this facility had not received PCE, total electrical costs would have been $2,370.

Table 1.1 below summarizes the energy efficiency measures analyzed for the Tununak Tribal Office. Listed are the estimates of the annual savings, installed costs, and two different financial measures of investment return.

<table>
<thead>
<tr>
<th>Rank</th>
<th>Feature</th>
<th>Improvement Description</th>
<th>Annual Energy Savings</th>
<th>Installed Cost</th>
<th>Savings to Investment Ratio, SIR</th>
<th>Simple Payback (Years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Setback Thermostat:</td>
<td>Implement a Heating Temperature Unoccupied Setback to 60.0 deg F for the Tununak Tribal Office space.</td>
<td>$1,101</td>
<td>$800</td>
<td>18.62</td>
<td>0.7</td>
</tr>
<tr>
<td>2</td>
<td>Ceiling w/ Attic:</td>
<td>Add R-30 fiberglass batts to attic with Standard Truss.</td>
<td>$2,777</td>
<td>$12,661</td>
<td>5.18</td>
<td>4.6</td>
</tr>
<tr>
<td>3</td>
<td>Window/Skylight:</td>
<td>Replace existing window with U-0.22 vinyl window</td>
<td>$173</td>
<td>$1,269</td>
<td>2.36</td>
<td>7.3</td>
</tr>
<tr>
<td>4</td>
<td>Exposed Floor:</td>
<td>Remove existing insulation and replace with R-30 fiberglass batts</td>
<td>$844</td>
<td>$17,835</td>
<td>1.12</td>
<td>21.1</td>
</tr>
<tr>
<td>5</td>
<td>Above-Grade Wall:</td>
<td>Add R-15 rigid foam to interior or exterior of existing wall; cost does not include siding or wall coverings.</td>
<td>$996</td>
<td>$21,271</td>
<td>1.11</td>
<td>21.3</td>
</tr>
<tr>
<td></td>
<td>TOTAL, all measures</td>
<td></td>
<td>$5,890</td>
<td>$53,837</td>
<td>2.36</td>
<td>9.1</td>
</tr>
</tbody>
</table>

Table Notes:

1 Savings to Investment Ratio (SIR) is a life-cycle cost measure calculated by dividing the total savings over the life of a project (expressed in today’s dollars) by its investment costs. The SIR is an indication of the profitability of a measure; the higher the SIR, the more profitable the project. An SIR greater than 1.0 indicates a cost-effective project (i.e. more savings than cost). Remember that this profitability is based on the position of that Energy Efficiency Measure (EEM) in the overall list and assumes that the measures above it are implemented first.
Simple Payback (SP) is a measure of the length of time required for the savings from an EEM to payback the investment cost, not counting interest on the investment and any future changes in energy prices. It is calculated by dividing the investment cost by the expected first-year savings of the EEM.

With all of these energy efficiency measures in place, the annual utility cost can be reduced by $5,890 per year, or 54.5% of the buildings’ total energy costs. These measures are estimated to cost $53,837, for an overall simple payback period of 9.1 years.

Table 1.2 below is a breakdown of the annual energy cost across various energy end use types, such as Space Heating and Water Heating. The first row in the table shows the breakdown for the building as it is now. The second row shows the expected breakdown of energy cost for the building assuming all of the retrofits in this report are implemented. Finally, the last row shows the annual energy savings that will be achieved from the retrofits.

<table>
<thead>
<tr>
<th>Description</th>
<th>Space Heating</th>
<th>Space Cooling</th>
<th>Water Heating</th>
<th>Lighting</th>
<th>Refrigeration</th>
<th>Other Electrical</th>
<th>Cooking</th>
<th>Clothes Drying</th>
<th>Ventilation Fans</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing Building</td>
<td>$9,991</td>
<td>$0</td>
<td>$0</td>
<td>$192</td>
<td>$0</td>
<td>$631</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$10,813</td>
</tr>
<tr>
<td>With All Proposed Retrofits</td>
<td>$4,101</td>
<td>$0</td>
<td>$0</td>
<td>$192</td>
<td>$0</td>
<td>$631</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$4,923</td>
</tr>
<tr>
<td>SAVINGS</td>
<td>$5,890</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$5,890</td>
</tr>
</tbody>
</table>

2. AUDIT AND ANALYSIS BACKGROUND

2.1 Program Description

This audit included services to identify, develop, and evaluate energy efficiency measures at the Tununak Tribal Office. The scope of this project included evaluating building shell, lighting and other electrical systems, and HVAC equipment, motors and pumps. Measures were analyzed based on life-cycle-cost techniques, which include the initial cost of the equipment, life of the equipment, annual energy cost, annual maintenance cost, and a discount rate of 3.0%/year in excess of general inflation.

2.2 Audit Description

Preliminary audit information was gathered in preparation for the site survey. The site survey provides critical information in deciphering where energy is used and what opportunities exist within a building. The entire site was surveyed to inventory the following to gain an understanding of how each building operates:
• Building envelope (roof, windows, etc.)
• Heating, ventilation, and air conditioning equipment (HVAC)
• Lighting systems and controls
• Building-specific equipment

The building site visit was performed to survey all major building components and systems. The site visit included detailed inspection of energy consuming components. Summary of building occupancy schedules, operating and maintenance practices, and energy management programs provided by the building manager were collected along with the system and components to determine a more accurate impact on energy consumption.

Details collected from Tununak Tribal Office enable a model of the building’s energy usage to be developed, highlighting the building’s total energy consumption, energy consumption by specific building component, and equivalent energy cost. The analysis involves distinguishing the different fuels used on site, and analyzing their consumption in different activity areas of the building.

Tununak Tribal Office is classified as being made up of the following activity areas:

1) Tununak Tribal Office: 1,599 square feet

In addition, the methodology involves taking into account a wide range of factors specific to the building. These factors are used in the construction of the model of energy used. The factors include:
• Occupancy hours
• Local climate conditions
• Prices paid for energy

2.3. Method of Analysis

Data collected was processed using AkWarm® Energy Use Software to estimate energy savings for each of the proposed energy efficiency measures (EEMs). The recommendations focus on the building envelope; HVAC; lighting, plug load, and other electrical improvements; and motor and pump systems that will reduce annual energy consumption.

EEMs are evaluated based on building use and processes, local climate conditions, building construction type, function, operational schedule, existing conditions, and foreseen future plans. Energy savings are calculated based on industry standard methods and engineering estimations.

Our analysis provides a number of tools for assessing the cost effectiveness of various improvement options. These tools utilize Life-Cycle Costing, which is defined in this context as a method of cost analysis that estimates the total cost of a project over the period of time that includes both the construction cost and ongoing maintenance and operating costs.

Savings to Investment Ratio (SIR) = Savings divided by Investment
Savings includes the total discounted dollar savings considered over the life of the improvement. When these savings are added up, changes in future fuel prices as projected by the Department of Energy are included. Future savings are discounted to the present to account for the time-value of money (i.e. money’s ability to earn interest over time). The **Investment** in the SIR calculation includes the labor and materials required to install the measure. An SIR value of at least 1.0 indicates that the project is cost-effective—total savings exceed the investment costs.

Simple payback is a cost analysis method whereby the investment cost of a project is divided by the first year’s savings of the project to give the number of years required to recover the cost of the investment. This may be compared to the expected time before replacement of the system or component will be required. For example, if a boiler costs $12,000 and results in a savings of $1,000 in the first year, the payback time is 12 years. If the boiler has an expected life to replacement of 10 years, it would not be financially viable to make the investment since the payback period of 12 years is greater than the project life.

The Simple Payback calculation does not consider likely increases in future annual savings due to energy price increases. As an offsetting simplification, simple payback does not consider the need to earn interest on the investment (i.e. it does not consider the time-value of money). Because of these simplifications, the SIR figure is considered to be a better financial investment indicator than the Simple Payback measure.

Measures are implemented in order of cost-effectiveness. The program first calculates individual SIRs, and ranks all measures by SIR, higher SIRs at the top of the list. An individual measure must have an individual SIR> =1 to make the cut. Next the building is modified and re-simulated with the highest ranked measure included. Now all remaining measures are re-evaluated and ranked, and the next most cost-effective measure is implemented. AkWarm goes through this iterative process until all appropriate measures have been evaluated and installed.

It is important to note that the savings for each recommendation is calculated based on implementing the most cost effective measure first, and then cycling through the list to find the next most cost effective measure. Implementation of more than one EEM often affects the savings of other EEMs. The savings may in some cases be relatively higher if an individual EEM is implemented in lieu of multiple recommended EEMs. For example implementing a reduced operating schedule for inefficient lighting will result in relatively high savings. Implementing a reduced operating schedule for newly installed efficient lighting will result in lower relative savings, because the efficient lighting system uses less energy during each hour of operation. If multiple EEM’s are recommended to be implemented, AkWarm calculates the combined savings appropriately.

Cost savings are calculated based on estimated initial costs for each measure. Installation costs include labor and equipment to estimate the full up-front investment required to implement a change. Costs are derived from Means Cost Data, industry publications, and local contractors and equipment suppliers.
2.4 Limitations of Study
All results are dependent on the quality of input data provided, and can only act as an approximation. In some instances, several methods may achieve the identified savings. This report is not intended as a final design document. The design professional or other persons following the recommendations shall accept responsibility and liability for the results.

3. Tununak Tribal Office

3.1. Building Description
The 1,599 square foot Tununak Tribal Office was constructed in 1980, with a normal occupancy of 10 people. This building is occupied from 9-5 Monday through Friday, and hosts bingo 3 days a week on evenings.

Description of Building Shell
The exterior walls are 2x4 construction with 3.5 inches of damaged fiberglass batt insulation. The roof of the building is a cold roof with 2.5 inches of damaged fiberglass batt insulation. The floor of the building is built on pilings with 3.5 inches of batt insulation. Typical windows throughout the building are double paned glass, wood frame windows. There are several broken windows.

Doors are metal with urethane cores and a metal edge.

Description of Heating Plants
The Heating Plant used in the building is:

Vented Ceiling Furnace
Fuel Type: #1 Oil
Input Rating: 75,000 BTU/hr
Steady State Efficiency: 80 %
Idle Loss: 1.5 %
Heat Distribution Type: Air

Space Heating Distribution Systems
In ceiling ducted air vents provide heat to the facility. A 1/3 horsepower fan moves the air. Heat settings are controlled by a single thermostat set to 65 degrees.

Lighting
The majority of the lighting in the building is made up of 17 Spiral 26 watt compact fluorescent light bulbs. There is additionally a single T12 magnetic ballast fixture with two 40 watt bulbs.

Plug Loads

Plug loads in the building include 8 desktop computers with monitors, various printers, fax machines, phones, a VHF radio, a stereo, and a coffee pot. There is additionally a fair amount of bingo Equipment, and a water purifier.

3.2 Predicted Energy Use

3.2.1 Energy Usage / Tariffs

The electric usage profile charts (below) represents the predicted electrical usage for the building. If actual electricity usage records were available, the model used to predict usage was calibrated to approximately match actual usage. The electric utility measures consumption in kilowatt-hours (kWh) and maximum demand in kilowatts (kW). One kWh usage is equivalent to 1,000 watts running for one hour.

The fuel oil usage profile shows the fuel oil usage for the building. Fuel oil consumption is measured in gallons. One gallon of #1 Fuel Oil provides approximately 132,000 BTUs of energy.

The following is a list of the utility companies providing energy to the building and the class of service provided:

- **Electricity:** AVEC-Tununak - Commercial - Sm

The average cost for each type of fuel used in this building is shown below in Table 3.1. This figure includes all surcharges, subsidies, and utility customer charges:

<table>
<thead>
<tr>
<th>Description</th>
<th>Average Energy Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricity</td>
<td>$0.21/kWh</td>
</tr>
<tr>
<td>#1 Oil</td>
<td>$6.75/gallons</td>
</tr>
</tbody>
</table>

3.2.1.1 Total Energy Use and Cost Breakdown

At current rates, Native Village of Tununak pays approximately $10,813 annually for electricity and other fuel costs for the Tununak Tribal Office.

Figure 3.1 below reflects the estimated distribution of costs across the primary end uses of energy based on the AkWarm© computer simulation. Comparing the “Retrofit” bar in the figure to the “Existing” bar shows the potential savings from implementing all of the energy efficiency measures shown in this report.
Figure 3.1
Annual Energy Costs by End Use

Figure 3.2 below shows how the annual energy cost of the building splits between the different fuels used by the building. The “Existing” bar shows the breakdown for the building as it is now; the “Retrofit” bar shows the predicted costs if all of the energy efficiency measures in this report are implemented.

Figure 3.2
Annual Energy Costs by Fuel Type

Figure 3.3 below addresses only Space Heating costs. The figure shows how each heat loss component contributes to those costs; for example, the figure shows how much annual space heating cost is caused by the heat loss through the Walls/Doors. For each component, the space heating cost for the Existing building is shown (blue bar) and the space heating cost assuming all retrofits are implemented (yellow bar) are shown.
The tables below show AkWarm’s estimate of the monthly fuel use for each of the fuels used in the building. For each fuel, the fuel use is broken down across the energy end uses. Note, in the tables below “DHW” refers to Domestic Hot Water heating.

Electrical Consumption (kWh)

<table>
<thead>
<tr>
<th></th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sept</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lighting</td>
<td>77</td>
<td>71</td>
<td>77</td>
<td>75</td>
<td>77</td>
<td>75</td>
<td>77</td>
<td>77</td>
<td>77</td>
<td>77</td>
<td>77</td>
<td>77</td>
</tr>
<tr>
<td>Other_Electrical</td>
<td>255</td>
<td>232</td>
<td>255</td>
<td>247</td>
<td>255</td>
<td>247</td>
<td>255</td>
<td>255</td>
<td>247</td>
<td>255</td>
<td>247</td>
<td>255</td>
</tr>
<tr>
<td>Space_Heating</td>
<td>137</td>
<td>122</td>
<td>118</td>
<td>83</td>
<td>47</td>
<td>24</td>
<td>17</td>
<td>22</td>
<td>38</td>
<td>75</td>
<td>102</td>
<td>137</td>
</tr>
</tbody>
</table>

Fuel Oil #1 Consumption (Gallons)

<table>
<thead>
<tr>
<th></th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sept</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space_Heating</td>
<td>220</td>
<td>196</td>
<td>189</td>
<td>131</td>
<td>72</td>
<td>34</td>
<td>22</td>
<td>30</td>
<td>56</td>
<td>118</td>
<td>163</td>
<td>221</td>
</tr>
</tbody>
</table>

3.2.2 Energy Use Index (EUI)

Energy Use Index (EUI) is a measure of a building’s annual energy utilization per square foot of building. This calculation is completed by converting all utility usage consumed by a building for one year, to British Thermal Units (Btu) or kBtu, and dividing this number by the building square footage. EUI is a good measure of a building’s energy use and is utilized regularly for comparison of energy performance for similar building types. The Oak Ridge National Laboratory (ORNL) Buildings Technology Center under a contract with the U.S. Department of Energy maintains a Benchmarking Building Energy Performance Program. The ORNL website determines how a building’s energy use compares with similar facilities throughout the U.S. and in a specific region or state.

Source use differs from site usage when comparing a building’s energy consumption with the national average. Site energy use is the energy consumed by the building at the building site.
only. Source energy use includes the site energy use as well as all of the losses to create and
distribute the energy to the building. Source energy represents the total amount of raw fuel
that is required to operate the building. It incorporates all transmission, delivery, and
production losses, which allows for a complete assessment of energy efficiency in a building.
The type of utility purchased has a substantial impact on the source energy use of a building.
The EPA has determined that source energy is the most comparable unit for evaluation
purposes and overall global impact. Both the site and source EUI ratings for the building are
provided to understand and compare the differences in energy use.
The site and source EUIs for this building are calculated as follows. (See Table 3.4 for details):

Building Site EUI = \[
\frac{\text{(Electric Usage in kBtu + Fuel Oil Usage in kBtu)}}{\text{Building Square Footage}}
\]

Building Source EUI = \[
\frac{\text{(Electric Usage in kBtu X SS Ratio + Fuel Oil Usage in kBtu X SS Ratio)}}{\text{Building Square Footage}}
\]

where “SS Ratio” is the Source Energy to Site Energy ratio for the particular fuel.

Table 3.4
Tununak Tribal Office EUI Calculations

<table>
<thead>
<tr>
<th>Energy Type</th>
<th>Building Fuel Use per Year</th>
<th>Site Energy Use per Year, kBTU</th>
<th>Source/Site Ratio</th>
<th>Source Energy Use per Year, kBTU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricity</td>
<td>4,838 kWh</td>
<td>16,512</td>
<td>3.340</td>
<td>55,151</td>
</tr>
<tr>
<td>#1 Oil</td>
<td>1,451 gallons</td>
<td>191,585</td>
<td>1.010</td>
<td>193,500</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>208,097</td>
<td></td>
<td>248,651</td>
</tr>
</tbody>
</table>

BUILDING AREA	1,599 Square Feet
BUILDING SITE EUI	130 kBTU/Ft²/Yr
BUILDING SOURCE EUI	155 kBTU/Ft²/Yr

* Site - Source Ratio data is provided by the Energy Star Performance Rating Methodology for Incorporating Source Energy Use document issued March 2011.

3.3 AkWarm© Building Simulation

An accurate model of the building performance can be created by simulating the thermal
performance of the walls, roof, windows and floors of the building. The HVAC system and
central plant are modeled as well, accounting for the outside air ventilation required by the
building and the heat recovery equipment in place.

The model uses local weather data and is trued up to historical energy use to ensure its
accuracy. The model can be used now and in the future to measure the utility bill impact of all
types of energy projects, including improving building insulation, modifying glazing, changing air
handler schedules, increasing heat recovery, installing high efficiency boilers, using variable air
volume air handlers, adjusting outside air ventilation and adding cogeneration systems.

For the purposes of this study, the Tununak Tribal Office was modeled using AkWarm© energy
use software to establish a baseline space heating and cooling energy usage. Climate data from
Tununak was used for analysis. From this, the model was be calibrated to predict the impact of
theoretical energy savings measures. Once annual energy savings from a particular measure
were predicted and the initial capital cost was estimated, payback scenarios were approximated. Equipment cost estimate calculations are provided in Appendix D.

Limitations of AkWarm© Models

- The model is based on typical mean year weather data for Tununak. This data represents the average ambient weather profile as observed over approximately 30 years. As such, the gas and electric profiles generated will not likely compare perfectly with actual energy billing information from any single year. This is especially true for years with extreme warm or cold periods, or even years with unexpectedly moderate weather.
- The heating and cooling load model is a simple two-zone model consisting of the building’s core interior spaces and the building’s perimeter spaces. This simplified approach loses accuracy for buildings that have large variations in cooling/heating loads across different parts of the building.
- The model does not model HVAC systems that simultaneously provide both heating and cooling to the same building space (typically done as a means of providing temperature control in the space).

The energy balances shown in Section 3.1 were derived from the output generated by the AkWarm© simulations.

4. ENERGY COST SAVING MEASURES

4.1 Summary of Results

The energy saving measures are summarized in Table 4.1. Please refer to the individual measure descriptions later in this report for more detail. Calculations and cost estimates for analyzed measures are provided in Appendix C.

<table>
<thead>
<tr>
<th>Rank</th>
<th>Feature</th>
<th>Improvement Description</th>
<th>Annual Energy Savings</th>
<th>Installed Cost</th>
<th>Savings to Investment Ratio, SIR</th>
<th>Simple Payback (Years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Setback Thermostat: Tununak Tribal Office</td>
<td>Implement a Heating Temperature Unoccupied Setback to 60.0 deg F for the Tununak Tribal Office space.</td>
<td>$1,101</td>
<td>$800</td>
<td>18.62</td>
<td>0.7</td>
</tr>
<tr>
<td>2</td>
<td>Ceiling w/ Attic: Tribal Office</td>
<td>Add R-30 fiberglass batts to attic with Standard Truss.</td>
<td>$2,777</td>
<td>$12,661</td>
<td>5.18</td>
<td>4.6</td>
</tr>
<tr>
<td>3</td>
<td>Window/Skylight: Tribal Office</td>
<td>Replace existing window with U-0.22 vinyl window</td>
<td>$173</td>
<td>$1,269</td>
<td>2.36</td>
<td>7.3</td>
</tr>
<tr>
<td>4</td>
<td>Exposed Floor: Tribal Office</td>
<td>Remove existing insulation and replace with R-30 fiberglass batts</td>
<td>$844</td>
<td>$17,835</td>
<td>1.12</td>
<td>21.1</td>
</tr>
<tr>
<td>5</td>
<td>Above-Grade Wall: Tribal Office</td>
<td>Add R-15 rigid foam to interior or exterior of existing wall; cost does not include siding or wall coverings.</td>
<td>$996</td>
<td>$21,271</td>
<td>1.11</td>
<td>21.3</td>
</tr>
<tr>
<td></td>
<td>TOTAL, all measures</td>
<td></td>
<td>$5,890</td>
<td>$53,837</td>
<td>2.36</td>
<td>9.1</td>
</tr>
</tbody>
</table>
4.2 Interactive Effects of Projects

The savings for a particular measure are calculated assuming all recommended EEMs coming before that measure in the list are implemented. If some EEMs are not implemented, savings for the remaining EEMs will be affected. For example, if ceiling insulation is not added, then savings from a project to replace the heating system will be increased, because the heating system for the building supplies a larger load.

In general, all projects are evaluated sequentially so energy savings associated with one EEM would not also be attributed to another EEM. By modeling the recommended project sequentially, the analysis accounts for interactive affects among the EEMs and does not “double count” savings.

Interior lighting, plug loads, facility equipment, and occupants generate heat within the building. When the building is in cooling mode, these items contribute to the overall cooling demands of the building; therefore, lighting efficiency improvements will reduce cooling requirements in air-conditioned buildings. Conversely, lighting-efficiency improvements are anticipated to slightly increase heating requirements. Heating penalties and cooling benefits were included in the lighting project analysis.

4.3 Building Shell Measures

4.3.1 Insulation Measures

<table>
<thead>
<tr>
<th>Rank</th>
<th>Location</th>
<th>Existing Type/R-Value</th>
<th>Recommendation Type/R-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Ceiling w/ Attic: Tribal Office</td>
<td>Framing Type: Standard Framing Spacing: 24 inches Insulated Sheathing: None Bottom Insulation Layer: R-8 Batt:FG or RW, 2.5 inches Top Insulation Layer: None Insulation Quality: Very Damaged Modeled R-Value: 7.6</td>
<td>Add R-30 fiberglass batts to attic with Standard Truss.</td>
</tr>
</tbody>
</table>

Installation Cost: $12,661 Estimated Life of Measure (yrs): 30 Energy Savings (/yr): $2,777
Breakeven Cost: $65,605 Savings-to-Investment Ratio: 5.2 Simple Payback yrs: 5

Auditors Notes: Adding insulation to the ceiling would provide a huge heat savings in the facility.

<table>
<thead>
<tr>
<th>Rank</th>
<th>Location</th>
<th>Existing Type/R-Value</th>
<th>Recommendation Type/R-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Exposed Floor: Tribal Office</td>
<td>Framing Type: 2 x Lumber Insulating Sheathing: None Top Insulation Layer: R-11 Batt:FG or RW, 3.5 inches Bottom Insulation Layer: None Insulation Quality: Damaged Modeled R-Value: 15.5</td>
<td>Remove existing insulation and replace with R-30 fiberglass batts</td>
</tr>
</tbody>
</table>

Installation Cost: $17,835 Estimated Life of Measure (yrs): 30 Energy Savings (/yr): $844
Breakeven Cost: $19,938 Savings-to-Investment Ratio: 1.1 Simple Payback yrs: 21

Auditors Notes: Replacing the current damaged insulation with new fiberglass batt insulation would be a big reduction in heat load.
4.3.2 Window Measures

<table>
<thead>
<tr>
<th>Rank</th>
<th>Location</th>
<th>Existing Type/R-Value</th>
<th>Recommendation Type/R-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Above-Grade Wall: Tribal Office</td>
<td>Wall Type: Single Stud
 Siding Configuration: Siding and Sheathing
 Insul. Sheathing: None
 Structural Wall: 2 x 4, 16 inches on center
 R-11 Batt: FG or RW, 3.5 inches
 Window and door headers: Not Insulated
 Insulation Quality: Damaged
 Modeled R-Value: 10.7</td>
<td>Add R-15 rigid foam to interior or exterior of existing wall; cost does not include siding or wall coverings.</td>
</tr>
</tbody>
</table>

Installation Cost: $21,271 **Estimated Life of Measure (yrs)**: 30 **Energy Savings (/yr)**: $996

Auditors Notes: Adding rigid foam insulation to the interior or exterior would add to the insulation of the walls and reduce the heat load in the facility.

4.4 Mechanical Equipment Measures

4.4.1 Night Setback Thermostat Measures

<table>
<thead>
<tr>
<th>Rank</th>
<th>Building Space</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tununak Tribal Office</td>
<td>Implement a Heating Temperature Unoccupied Setback to 60.0 deg F for the Tununak Tribal Office space.</td>
</tr>
</tbody>
</table>

Installation Cost: $800 **Estimated Life of Measure (yrs)**: 15 **Energy Savings (/yr)**: $1,101

Auditors Notes: A programmable thermostat should be installed that can be programmed to set the temperature in the building at 60 degree when the facility is unoccupied such as at night and on weekends.
5. ENERGY EFFICIENCY ACTION PLAN

Through inspection of the energy-using equipment on-site and discussions with site facilities personnel, this energy audit has identified several energy-saving measures. The measures will reduce the amount of fuel burned and electricity used at the site. The projects will not degrade the performance of the building and, in some cases, will improve it.

Several types of EEMs can be implemented immediately by building staff, and others will require various amounts of lead time for engineering and equipment acquisition. In some cases, there are logical advantages to implementing EEMs concurrently. For example, if the same electrical contractor is used to install both lighting equipment and motors, implementation of these measures should be scheduled to occur simultaneously.

Appendix A – Listing of Energy Conservation and Renewable Energy Websites

Lighting

Hot Water Heaters

Solar Water Heating

Plug Loads

Wind
AWEA Web Site – http://www.awea.org
National Wind Coordinating Collaborative – http://www.nationalwind.org
Utility Wind Interest Group site: http://www.uwig.org
WPA Web Site – http://www.windpoweringamerica.gov
Homepower Web Site: http://homepower.com
Windustry Project: http://www.windustry.com

Solar
NREL – http://www.nrel.gov/rredc/
Firstlook – http://firstlook.3tiergroup.com
State and Utility Incentives and Utility Policies - http://www.dsireusa.org