Comprehensive Energy Audit
For
Russian Mission Clinic

Prepared For
Iqurmuit Traditional Council

August 8, 2011

Prepared By:

ANTHC-DEHE
Energy Projects Group
1901 Bragaw Street, Suite 200
Anchorage, AK 99508
PREFACE

The Energy Projects Group at the Alaska Native Tribal Health Consortium (ANTHC) prepared this document for the Iqurmuit Traditional Council and the Yukon Kuskokwim Health Corporation (YKHC). The authors of this report are Carl Remley, Certified Energy Auditor (CEA) and Certified Energy Manager (CEM), Chris Mercer (CEA), and Gavin Dixon.

The purpose of this report is to provide a comprehensive document of the findings and analysis that resulted from an energy audit conducted over the past several months by the Energy Projects Group of ANTHC. This report analyzes historical energy use and identifies costs and savings of recommended energy efficiency measures. Discussions of site specific concerns and an Energy Efficiency Action Plan are also included in this report.

ACKNOWLEDGMENTS

The ANTHC Energy Projects Group gratefully acknowledges the assistance of the Iqurmuit Traditional Council, Ms. Olga Evan of the Yukon Kuskokwim Health Corporation, and Ms. Marcie Sherer of AVCP.
1. EXECUTIVE SUMMARY

This report was prepared for the Iqurmuit Traditional Council. The scope of the audit focused on Russian Mission Clinic. The scope of this report is a comprehensive energy study, which included an analysis of building shell, interior and exterior lighting systems, HVAC systems, and plug loads.

Based on electricity and fuel oil prices in effect at the time of the audit, the annual energy cost for the building were $2,721 for electricity and $4,802 for #1 Oil, for a total energy cost of $7,523.

It should be noted that this facility received the power cost equalization subsidy last year. If it did not receive the PCE subsidy the annual electricity cost would have been $7,837 and the total energy cost would be $12,639 per year.

Table 1.1 below summarizes the energy efficiency measures analyzed for the Russian Mission Clinic. Listed are the estimates of the annual savings, installed costs, and two different financial measures of investment return.

<table>
<thead>
<tr>
<th>Rank</th>
<th>Feature</th>
<th>Improvement Description</th>
<th>Annual Energy Savings</th>
<th>Installed Cost</th>
<th>Savings to Investment Ratio, SIR1</th>
<th>Simple Payback (Years)2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Setback Thermostat: Russian Mission Health Clinic</td>
<td>Implement a Heating Temperature Unoccupied Setback to 60.0 deg F for the Russian Mission Health Clinic space.</td>
<td>$997</td>
<td>$200</td>
<td>74.62</td>
<td>0.2</td>
</tr>
<tr>
<td>2</td>
<td>Water Circulation Pump</td>
<td>Shut off Water circulation pump when temperatures are above freezing</td>
<td>$22</td>
<td>$10</td>
<td>12.66</td>
<td>0.5</td>
</tr>
<tr>
<td>3</td>
<td>Computers</td>
<td>Turn off computers when not in use.</td>
<td>$68</td>
<td>$50</td>
<td>5.39</td>
<td>0.7</td>
</tr>
<tr>
<td>4</td>
<td>CB Radio</td>
<td>Unplug CB radio when not in use.</td>
<td>$6</td>
<td>$10</td>
<td>3.03</td>
<td>1.6</td>
</tr>
<tr>
<td>5</td>
<td>Air Tightening: Doors</td>
<td>Perform air sealing to reduce air leakage by 100 cfm at 50 Pascals.</td>
<td>$82</td>
<td>$300</td>
<td>2.80</td>
<td>3.7</td>
</tr>
<tr>
<td>6</td>
<td>Computer Monitors</td>
<td>Turn off computers when not in use.</td>
<td>$29</td>
<td>$50</td>
<td>2.00</td>
<td>1.7</td>
</tr>
<tr>
<td>7</td>
<td>Lighting: Storage, Closet</td>
<td>Replace with 3 FLUOR CFL, Spiral 10 W</td>
<td>$5</td>
<td>$27</td>
<td>1.09</td>
<td>5.0</td>
</tr>
<tr>
<td>TOTAL, all measures</td>
<td></td>
<td></td>
<td>$1,209</td>
<td>$647</td>
<td>25.23</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Table Notes:

1 Savings to Investment Ratio (SIR) is a life-cycle cost measure calculated by dividing the total savings over the life of a project (expressed in today’s dollars) by its investment costs. The SIR is an indication of the profitability of a measure; the higher the SIR, the more profitable the
project. An SIR greater than 1.0 indicates a cost-effective project (i.e. more savings than cost). Remember that this profitability is based on the position of that Energy Efficiency Measure (EEM) in the overall list and assumes that the measures above it are implemented first.

Simple Payback (SP) is a measure of the length of time required for the savings from an EEM to payback the investment cost, not counting interest on the investment and any future changes in energy prices. It is calculated by dividing the investment cost by the expected first-year savings of the EEM.

With all of these energy efficiency measures in place, the annual utility cost can be reduced by $1,209 per year, or 16.1% of the buildings’ total energy costs. These measures are estimated to cost $647, for an overall simple payback period of 0.5 years.

Table 1.2 below is a breakdown of the annual energy cost across various energy end use types, such as Space Heating and Water Heating. The first row in the table shows the breakdown for the building as it is now. The second row shows the expected breakdown of energy cost for the building assuming all of the retrofits in this report are implemented. Finally, the last row shows the annual energy savings that will be achieved from the retrofits.

<table>
<thead>
<tr>
<th>Description</th>
<th>Space Heating</th>
<th>Space Cooling</th>
<th>Water Heating</th>
<th>Lighting</th>
<th>Other Electrical</th>
<th>Cooking</th>
<th>Clothes Drying</th>
<th>Ventilation Fans</th>
<th>Service Fees</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing Building</td>
<td>$3,946</td>
<td>$0</td>
<td>$924</td>
<td>$784</td>
<td>$1,786</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$7,523</td>
</tr>
<tr>
<td>With All Proposed Retrofits</td>
<td>$3,240</td>
<td>$0</td>
<td>$924</td>
<td>$766</td>
<td>$1,301</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$6,314</td>
</tr>
<tr>
<td>SAVINGS</td>
<td>$707</td>
<td>$0</td>
<td>$0</td>
<td>$17</td>
<td>$485</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$1,209</td>
</tr>
</tbody>
</table>

2. AUDIT AND ANALYSIS BACKGROUND

2.1 Program Description

This audit included services to identify, develop, and evaluate energy efficiency measures at the Russian Mission Clinic. The scope of this project included evaluating building shell, lighting and other electrical systems, HVAC equipment, motors and pumps. Measures were analyzed based on life-cycle-cost techniques, which include the initial cost of the equipment, life of the equipment, annual energy cost, annual maintenance cost, and a discount rate of 3.0%/year in excess of general inflation.

2.2 Audit Description
Preliminary audit information was gathered in preparation for the site survey. The site survey provides critical information in deciphering where energy is used and what opportunities exist within a building. The entire site was surveyed to inventory the following to gain an understanding of how each building operates:

- Building envelope (roof, windows, etc.)
- Heating, ventilation, and air conditioning equipment (HVAC)
- Lighting systems and controls
- Building-specific equipment

The building site visit was performed to survey all major building components and systems. The site visit included detailed inspection of energy consuming components. Summary of building occupancy schedules, operating and maintenance practices, and energy management programs provided by the building manager were collected along with the system and components to determine a more accurate impact on energy consumption.

Details collected from Russian Mission Clinic enable a model of the building’s energy usage to be developed, highlighting the building’s total energy consumption, energy consumption by specific building component, and equivalent energy cost. The analysis involves distinguishing the different fuels used on site, and analyzing their consumption in different activity areas of the building.

Russian Mission Clinic is 2,068 square feet.

In addition, the methodology involves taking into account a wide range of factors specific to the building. These factors are used in the construction of the model of energy used. The factors include:

- Occupancy hours
- Local climate conditions
- Prices paid for energy

2.3. Method of Analysis

Data collected was processed using AkWarm© Energy Use Software to estimate energy savings for each of the proposed energy efficiency measures (EEMs). The recommendations focus on the building envelope; HVAC; lighting, plug load, and other electrical improvements; and motor and pump systems that will reduce annual energy consumption.

EEMs are evaluated based on building use and processes, local climate conditions, building construction type, function, operational schedule, existing conditions, and foreseen future plans. Energy savings are calculated based on industry standard methods and engineering estimations.

Our analysis provides a number of tools for assessing the cost effectiveness of various improvement options. These tools utilize **Life-Cycle Costing**, which is defined in this context as a method of cost analysis that estimates the total cost of a project over the period of time that includes both the construction cost and ongoing maintenance and operating costs.
Savings to Investment Ratio (SIR) = Savings divided by Investment

Savings includes the total discounted dollar savings considered over the life of the improvement. When these savings are added up, changes in future fuel prices as projected by the Department of Energy are included. Future savings are discounted to the present to account for the time-value of money (i.e. money’s ability to earn interest over time). The Investment in the SIR calculation includes the labor and materials required to install the measure. An SIR value of at least 1.0 indicates that the project is cost-effective—total savings exceed the investment costs.

Simple payback is a cost analysis method whereby the investment cost of a project is divided by the first year’s savings of the project to give the number of years required to recover the cost of the investment. This may be compared to the expected time before replacement of the system or component will be required. For example, if a boiler costs $12,000 and results in a savings of $1,000 in the first year, the payback time is 12 years. If the boiler has an expected life to replacement of 10 years, it would not be financially viable to make the investment since the payback period of 12 years is greater than the project life.

The Simple Payback calculation does not consider likely increases in future annual savings due to energy price increases. As an offsetting simplification, simple payback does not consider the need to earn interest on the investment (i.e. it does not consider the time-value of money). Because of these simplifications, the SIR figure is considered to be a better financial investment indicator than the Simple Payback measure.

Measures are implemented in order of cost-effectiveness. The program first calculates individual SIRs, and ranks all measures by SIR, higher SIRs at the top of the list. An individual measure must have an individual SIR>=1 to make the cut. Next the building is modified and re-simulated with the highest ranked measure included. Now all remaining measures are re-evaluated and ranked, and the next most cost-effective measure is implemented. AkWarm goes through this iterative process until all appropriate measures have been evaluated and installed.

It is important to note that the savings for each recommendation is calculated based on implementing the most cost effective measure first, and then cycling through the list to find the next most cost effective measure. Implementation of more than one EEM often affects the savings of other EEMs. The savings may in some cases be relatively higher if an individual EEM is implemented in lieu of multiple recommended EEMs. For example implementing a reduced operating schedule for inefficient lighting will result in relatively high savings. Implementing a reduced operating schedule for newly installed efficient lighting will result in lower relative savings, because the efficient lighting system uses less energy during each hour of operation. If multiple EEM’s are recommended to be implemented, AkWarm calculates the combined savings appropriately.

Cost savings are calculated based on estimated initial costs for each measure. Installation costs include labor and equipment to estimate the full up-front investment required to implement a
change. Costs are derived from Means Cost Data, industry publications, and local contractors and equipment suppliers.

2.4 Limitations of Study
All results are dependent on the quality of input data provided, and can only act as an approximation. In some instances, several methods may achieve the identified savings. This report is not intended as a final design document. The design professional or other persons following the recommendations shall accept responsibility and liability for the results.

3. Russian Mission Clinic

3.1. Building Description

The 2,068 square foot Russian Mission Clinic was constructed in 2004, with a normal occupancy of 5 people. The building is in operation from 9 a.m. to 4 p.m., Monday through Friday.

Description of Building Shell

The exterior walls are 2x6 construction with 10 inches of polyurethane insulation. The roof is a hot roof with 10 inches of polyurethane insulation featuring an attic with a dropped ceiling and limited sound insulation. The foundation is a post and pad foundation with plywood siding and 10 inches of polyurethane insulation. Typical windows in the building are wood/vinyl operable double paned windows. There are two metal standard doors.

Description of Heating Plants

The Heating Plants used in the building are:

Forced Air Furnace

Nameplate Information: Williamson Thermaflo, Model CHB-140-DD, 140,000

BTU @ 1 gph 115 v, single phase, 3/4 hp motor, Beckett AFG Burner, Rotomatika Model 707502

Fuel Type: #1 Oil
Input Rating: 140,000 BTU/hr
Steady State Efficiency: 74 %
Idle Loss: 1.5 %
Heat Distribution Type: Air

Notes: Air dampener was in open position during audit. The furnace is not run off the DDC system, but instead off the thermostat.

Oil fired hot water tank

Fuel Type: #1 Oil
Input Rating: 140,000 BTU/hr
Steady State Efficiency: 87 %
Idle Loss: 1.5 %
Heat Distribution Type: Water
Boiler Operation: All Year

Space Heating Distribution Systems

The clinic is heated by a forced air furnace. The furnace distributes air through a ¾ horsepower fan to the various rooms of the clinic based on heating demand determined by a manual thermostat outside exam room one.

Domestic Hot Water System

The domestic hot water system works occasionally when a jumper is used to active the heating system. Hot water is used by cleaning staff and for showers when dental, doctoral and behavioral health staffs visit the clinic.

Waste Heat Recovery Information

There is currently no waste heat recovery for the Russian Mission clinic.

Lighting

The building is lit primarily by 32 Watt T8 fluorescent lamps with occupancy sensors. There are several incandescent bulbs in the lesser used rooms, and there are metal halide exterior lights controlled manually.

Plug Loads

Plug loads in the building are primarily made up of computers, medical equipment, refrigerators, and the copy machine.

3.2 Predicted Energy Use

3.2.1 Energy Usage / Tariffs

The electric usage profile charts (below) represent the predicted electrical usage for the building. If actual electricity usage records were available, the model used to predict usage was calibrated to approximately match actual usage. The electric utility measures consumption in kilowatt-hours (kWh) and maximum demand in kilowatts (kW). One kWh usage is equivalent to 1,000 watts running for one hour.

The fuel oil usage profile shows the fuel oil usage for the building. Fuel oil consumption is measured in gallons. One gallon of #1 Fuel Oil provides approximately 132,000 BTUs of energy.

The following is a list of the utility companies providing energy to the building and the class of service provided:
The average cost for each type of fuel used in this building is shown below in Table 3.1. This figure includes all surcharges, subsidies, and utility customer charges:

<table>
<thead>
<tr>
<th>Description</th>
<th>Average Energy Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricity</td>
<td>$0.16/kWh</td>
</tr>
<tr>
<td>#1 Oil</td>
<td>$4.95/gallon</td>
</tr>
</tbody>
</table>

3.2.1.1 Total Energy Use and Cost Breakdown

At current rates, the Iqurmuit Traditional Council pays approximately $7,523 annually for electricity and #1 fuel costs for the Russian Mission Clinic.

Figure 3.1 below reflects the estimated distribution of costs across the primary end uses of energy based on the AkWarm© computer simulation. Comparing the “Retrofit” bar in the figure to the “Existing” bar shows the potential savings from implementing all of the energy efficiency measures shown in this report.

![Figure 3.1](image)

Figure 3.1

Annual Energy Costs by End Use

Figure 3.2 below shows how the annual energy cost of the building splits between the different fuels used by the building. The “Existing” bar shows the breakdown for the building as it is now; the “Retrofit” bar shows the predicted costs if all of the energy efficiency measures in this report are implemented.
Figure 3.2
Annual Energy Costs by Fuel Type

Figure 3.3 below addresses only Space Heating costs. The figure shows how each heat loss component contributes to those costs; for example, the figure shows how much annual space heating cost is caused by the heat loss through the Walls/Doors. For each component, the space heating cost for the Existing building is shown (blue bar) and the space heating cost assuming all retrofits are implemented (yellow bar) are shown.

Figure 3.3
Annual Space Heating Cost by Component

The tables below show AkWarm’s estimate of the monthly fuel use for each of the fuels used in the building. For each fuel, the fuel use is broken down across the energy end uses. Note, in the tables below “DHW” refers to Domestic Hot Water heating.
Electrical Consumption (kWh)

<table>
<thead>
<tr>
<th></th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sept</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other_Electrical</td>
<td>947</td>
<td>863</td>
<td>947</td>
<td>917</td>
<td>947</td>
<td>917</td>
<td>947</td>
<td>947</td>
<td>947</td>
<td>947</td>
<td>917</td>
<td>947</td>
</tr>
<tr>
<td>Refrigeration</td>
<td>44</td>
<td>40</td>
<td>44</td>
<td>43</td>
<td>44</td>
<td>43</td>
<td>44</td>
<td>44</td>
<td>43</td>
<td>44</td>
<td>43</td>
<td>44</td>
</tr>
<tr>
<td>Ventilation_Fans</td>
<td>0</td>
</tr>
<tr>
<td>DHW</td>
<td>4</td>
</tr>
<tr>
<td>Space_Heating</td>
<td>67</td>
<td>59</td>
<td>54</td>
<td>32</td>
<td>13</td>
<td>1</td>
<td>0</td>
<td>7</td>
<td>28</td>
<td>45</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>Space_Cooling</td>
<td>0</td>
</tr>
</tbody>
</table>

Fuel Oil #1 Consumption (Gallons)

<table>
<thead>
<tr>
<th></th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sept</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHW</td>
<td>16</td>
<td>14</td>
<td>16</td>
<td>15</td>
<td>16</td>
<td>15</td>
<td>16</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>Space_Heating</td>
<td>137</td>
<td>121</td>
<td>113</td>
<td>69</td>
<td>31</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>14</td>
<td>61</td>
<td>95</td>
<td>138</td>
</tr>
</tbody>
</table>

3.2.2 Energy Use Index (EUI)

Energy Use Index (EUI) is a measure of a building’s annual energy utilization per square foot of building. This calculation is completed by converting all utility usage consumed by a building for one year, to British Thermal Units (Btu) or kBtu, and dividing this number by the building square footage. EUI is a good measure of a building’s energy use and is utilized regularly for comparison of energy performance for similar building types. The Oak Ridge National Laboratory (ORNL) Buildings Technology Center under a contract with the U.S. Department of Energy maintains a Benchmarking Building Energy Performance Program. The ORNL website determines how a building’s energy use compares with similar facilities throughout the U.S. and in a specific region or state.

Source use differs from site usage when comparing a building’s energy consumption with the national average. Site energy use is the energy consumed by the building at the building site only. Source energy use includes the site energy use as well as all of the losses to create and distribute the energy to the building. Source energy represents the total amount of raw fuel that is required to operate the building. It incorporates all transmission, delivery, and production losses, which allows for a complete assessment of energy efficiency in a building. The type of utility purchased has a substantial impact on the source energy use of a building. The EPA has determined that source energy is the most comparable unit for evaluation purposes and overall global impact. Both the site and source EUI ratings for the building are provided to understand and compare the differences in energy use.

The site and source EUIs for this building are calculated as follows. (See Table 3.4 for details):

\[
\text{Building Site EUI} = \frac{\text{Electric Usage in kBtu} + \text{Oil Usage in kBtu}}{\text{Building Square Footage}}
\]

\[
\text{Building Source EUI} = \frac{\text{Electric Usage in kBtu} \times \text{SS Ratio} + \text{Oil Usage in kBtu} \times \text{SS Ratio}}{\text{Building Square Footage}}
\]

where “SS Ratio” is the Source Energy to Site Energy ratio for the particular fuel.
Table 3.4
Russian Mission Clinic EUI Calculations

<table>
<thead>
<tr>
<th>Energy Type</th>
<th>Building Fuel Use per Year</th>
<th>Site Energy Use per Year, kBTU</th>
<th>Source/Site Ratio</th>
<th>Source Energy Use per Year, kBTU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricity</td>
<td>17,006 kWh</td>
<td>58,040</td>
<td>3.340</td>
<td>193,855</td>
</tr>
<tr>
<td>#1 Oil</td>
<td>970 gallons</td>
<td>128,060</td>
<td>1.010</td>
<td>129,340</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>186,100</td>
<td></td>
<td>323,195</td>
</tr>
</tbody>
</table>

BUILDING AREA 2,068 Square Feet
BUILDING SITE EUI 90 kBTU/Ft²/Yr
BUILDING SOURCE EUI 156 kBTU/Ft²/Yr

* Site - Source Ratio data is provided by the Energy Star Performance Rating Methodology for Incorporating Source Energy Use document issued March 2011.

3.3 AkWarm© Building Simulation

An accurate model of the building performance can be created by simulating the thermal performance of the walls, roof, windows and floors of the building. The HVAC system and central plant are modeled as well, accounting for the outside air ventilation required by the building and the heat recovery equipment in place.

The model uses local weather data and is trued up to historical energy use to ensure its accuracy. The model can be used now and in the future to measure the utility bill impact of all types of energy projects, including improving building insulation, modifying glazing, changing air handler schedules, increasing heat recovery, installing high efficiency boilers, using variable air volume air handlers, adjusting outside air ventilation and adding cogeneration systems.

For the purposes of this study, the Russian Mission Clinic was modeled using AkWarm© energy use software to establish a baseline space heating and cooling energy usage. Climate data from Russian Mission was used for analysis. From this, the model was be calibrated to predict the impact of theoretical energy savings measures. Once annual energy savings from a particular measure were predicted and the initial capital cost was estimated, payback scenarios were approximated. Equipment cost estimate calculations are provided in Appendix D.

Limitations of AkWarm© Models

- The model is based on typical mean year weather data for Russian Mission. This data represents the average ambient weather profile as observed over approximately 30 years. As such, the gas and electric profiles generated will not likely compare perfectly with actual energy billing information from any single year. This is especially true for years with extreme warm or cold periods, or even years with unexpectedly moderate weather.
- The heating and cooling load model is a simple two-zone model consisting of the building’s core interior spaces and the building’s perimeter spaces. This simplified approach loses accuracy for buildings that have large variations in cooling/heating loads across different parts of the building.
• The model does not model HVAC systems that simultaneously provide both heating and cooling to the same building space (typically done as a means of providing temperature control in the space).

The energy balances shown in Section 3.1 were derived from the output generated by the AkWarm® simulations.

4. ENERGY COST SAVING MEASURES

4.1 Summary of Results

The energy saving measures are summarized in Table 4.1. Please refer to the individual measure descriptions later in this report for more detail.

Table 4.1

<table>
<thead>
<tr>
<th>Rank</th>
<th>Feature</th>
<th>Improvement Description</th>
<th>Annual Energy Savings</th>
<th>Installed Cost</th>
<th>Savings to Investment Ratio, SIR</th>
<th>Simple Payback (Years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Setback Thermostat: Russian Mission Health Clinic</td>
<td>Implement a Heating Temperature Unoccupied Setback to 60.0 deg F for the Russian Mission Health Clinic space.</td>
<td>$977</td>
<td>$200</td>
<td>74.62</td>
<td>0.2</td>
</tr>
<tr>
<td>2</td>
<td>Water Circulation Pump</td>
<td>Improve Manual Switching</td>
<td>$22</td>
<td>$10</td>
<td>12.66</td>
<td>0.5</td>
</tr>
<tr>
<td>3</td>
<td>Computers</td>
<td>Improve Manual Switching</td>
<td>$68</td>
<td>$50</td>
<td>5.39</td>
<td>0.7</td>
</tr>
<tr>
<td>4</td>
<td>CB Radio</td>
<td>Improve Manual Switching</td>
<td>$6</td>
<td>$10</td>
<td>3.03</td>
<td>1.6</td>
</tr>
<tr>
<td>5</td>
<td>Air Tightening: Doors</td>
<td>Perform air sealing to reduce air leakage by 100 cfm at 50 Pascals.</td>
<td>$82</td>
<td>$300</td>
<td>2.80</td>
<td>3.7</td>
</tr>
<tr>
<td>6</td>
<td>Computer Monitors</td>
<td>Improve Manual Switching</td>
<td>$29</td>
<td>$50</td>
<td>2.00</td>
<td>1.7</td>
</tr>
<tr>
<td>7</td>
<td>Lighting: Storage, Closet</td>
<td>Replace with 3 FLUOR CFL, Spiral 10 W</td>
<td>$5</td>
<td>$27</td>
<td>1.09</td>
<td>5.0</td>
</tr>
<tr>
<td></td>
<td>TOTAL, all measures</td>
<td></td>
<td>$1,209</td>
<td>$647</td>
<td>25.23</td>
<td>0.5</td>
</tr>
</tbody>
</table>

4.2 Interactive Effects of Projects

The savings for a particular measure are calculated assuming all recommended EEMs coming before that measure in the list are implemented. If some EEMs are not implemented, savings for the remaining EEMs will be affected. For example, if ceiling insulation is not added, then savings from a project to replace the heating system will be increased, because the heating system for the building supplies a larger load.

In general, all projects are evaluated sequentially so energy savings associated with one EEM would not also be attributed to another EEM. By modeling the recommended project sequentially, the analysis accounts for interactive affects among the EEMs and does not “double count” savings.

Interior lighting, plug loads, facility equipment, and occupants generate heat within the building. When the building is in cooling mode, these items contribute to the overall cooling demands of the building;
therefore, lighting efficiency improvements will reduce cooling requirements in air-conditioned buildings. Conversely, lighting-efficiency improvements are anticipated to slightly increase heating requirements. Heating penalties and cooling benefits were included in the lighting project analysis.

4.3 Building Shell Measures

4.3.1. Energy Efficiency Measure: Seal Air Leaks

<table>
<thead>
<tr>
<th>Rank</th>
<th>Estimated Air Leakage</th>
<th>Recommended Air Leakage Target</th>
<th>Energy Auditor Comments</th>
<th>Cost</th>
<th>Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Air Tightness from Blower Door Test: 2150 cfm at 50 Pascals</td>
<td>Perform air sealing to reduce air leakage by 100 cfm at 50 Pascals.</td>
<td>Need additional weather stripping on front door.</td>
<td>$300</td>
<td>$82</td>
</tr>
</tbody>
</table>

Many buildings, especially older ones, have air leaks allowing heated and cooled air to escape when the air pressure differs between the inside and outside of the building. Because these leaks allow unconditioned air to enter as conditioned air is lost, air leaks can be a significant waste of energy and money. They also make the building drafty. Many buildings have hidden air leaks requiring a weatherization technician to find and seal. Buildings with indoor air pollution caused by combustion heating, tobacco smoking, or moisture problems, may require more ventilation than average buildings. This building could use better weather stripping on the doors.

4.4 Heating Measures

4.4.1. EEM Heating Plants and Distribution Systems

A heating system is expected to last approximately 20-25 years, depending on the system. If the system is nearing the end of its life, it is better to replace it sooner rather than later to avoid being without heat for several days when it fails. This way, you will have time to compare bids, check references and ensure the contractors are bonded and insured.

Recommendation: This system is currently working effectively. Operating the heating system manually and not with the malfunctioning DDC system is recommended.

4.4.1.1. EXISTING SYSTEMS

4.4.1.1.1 Forced Air Furnace

Description: Williamson Thermaflo, Model CHB-140-DD, 140,000 BTU @ 1 gph 115 v, single phase, 3/4 hp motor, Beckett AFG Burner, Rotomatika Model 707502 heating plant fueled by #1 Fuel Oil, with a Natural draft.

Size: 140,000 BTU/h

Efficiency (Steady State & Idle): 74%

Portion of heat supplied by this unit: 100%

Notes: Air dampener was in open position during audit. The furnace is not run off the DDC system, but instead off the thermostat.
4.4.1.2 Oil fired hot water tank

Description: heating plant fueled by #1 Fuel Oil, with a Natural draft.

Size: 140,000 BTU/h

Efficiency (Steady State & Idle): 87%

Portion of heat supplied by this unit: 0%

Notes:

4.4.2 Programmable Thermostat

<table>
<thead>
<tr>
<th>Location</th>
<th>Existing Situation</th>
<th>Recommended Improvement</th>
<th>Install Cost</th>
<th>Annual Savings</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Russian Mission Health Clinic</td>
<td>Existing Unoccupied Heating Setpoint: 72.0 deg F</td>
<td>Implement a Heating Temperature Unoccupied Setback to 60.0 deg F for the Russian Mission Health Clinic space.</td>
<td>$200</td>
<td>$997</td>
<td></td>
</tr>
</tbody>
</table>

Recommendation: Installing a programmable thermostat in place of the current manual thermostat and reducing the temperature the building is heated to when no one is in the building (nights and weekends) would yield significant energy savings.

4.5 Lighting Upgrades

The goal of this section is to present any lighting energy conservation measures that may also be cost beneficial. It should be noted that replacing current bulbs with more energy-efficient equivalents will have a small effect on the building heating and cooling loads. The building cooling load will see a small decrease from an upgrade to more efficient bulbs and the heating load will see a small increase, as the more energy efficient bulbs give off less heat.

4.5.1 Lighting Upgrade – Replace Existing Fixtures and Bulbs

<table>
<thead>
<tr>
<th>Location</th>
<th>Existing Lighting</th>
<th>Recommended Improvement</th>
<th>Install Cost</th>
<th>Annual Savings</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage, Closet</td>
<td>3 INCAN A Lamp, Std 60W with Manual Switching</td>
<td>Replace with 3 FLUOR CFL, Spiral 10 W</td>
<td>$27</td>
<td>$5</td>
<td></td>
</tr>
</tbody>
</table>

Description:

This EEM includes replacement of all incandescent fixtures to compact fluorescent fixtures. The energy usage of an incandescent compared to a compact fluorescent is approximately 3 to 4 times greater. In addition to the energy savings, compact fluorescent fixtures burn-hours are 8 to 15 times longer than incandescent fixtures ranging from 6,000 to 15,000 burn-hours, compared to incandescent fixtures ranging from 750 to 1000 burn-hours.

4.6 Appliances
<table>
<thead>
<tr>
<th>Equipment</th>
<th>Quantity</th>
<th>Description</th>
<th>Action</th>
<th>Cost Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grundfos Circ Pump</td>
<td>10</td>
<td>Turn off water circulation when temperatures are above freezing.</td>
<td>$10</td>
<td>$22</td>
</tr>
<tr>
<td>Computers</td>
<td>7</td>
<td>3 Dell - Tower</td>
<td>Turn off computers when not in use.</td>
<td>$50</td>
</tr>
<tr>
<td>CB Radio</td>
<td>10</td>
<td>CB Radio</td>
<td>Turn off radio when clinic is unoccupied</td>
<td>$10</td>
</tr>
<tr>
<td>Computer Monitors</td>
<td>7</td>
<td>3 Dell - Monitor</td>
<td>Turn off monitors when not in use.</td>
<td>$50</td>
</tr>
</tbody>
</table>

Shutting off the Grundfos circulation pump located in the mechanical room in the warmer months would yield immediate payback, and cause no harm to the water or sewer systems. The pump is currently left on all year; it should be shut off in the warmer months when water circulation is not necessary.

Using power management software already on the computers and shutting down computers when not in use would yield a significant energy savings. Going into your computer settings and setting the computer to shutdown when not in use for more than 30 minutes would achieve this result. The monitor can be adjusted the same way.

Turning off the radio when the clinic is not occupied would yield a significant energy savings.

5. ENERGY EFFICIENCY ACTION PLAN

Through inspection of the energy-using equipment on-site and discussions with site facilities personnel, this energy audit has identified several energy-saving measures. The measures will reduce the amount of fuel burned and electricity used at the site. The projects will not degrade the performance of the building and, in some cases, will improve it.

Several types of EEMs can be implemented immediately by building staff, and others will require various amounts of lead time for engineering and equipment acquisition. In some cases, there are logical advantages to implementing EEMs concurrently. For example, if the same electrical contractor is used to install both lighting equipment and motors, implementation of these measures should be scheduled to occur simultaneously.

Attached to this report is Appendix A. The objective of this appendix is to provide the Eek Traditional Council with a wide range of websites to further your knowledge of both energy conservation and renewable energy.
Appendix A – Listing of Energy Conservation and Renewable Energy Websites

Lighting
Illumination Engineering Society - http://www.iesna.org/
Energy Star Compact Fluorescent Lighting Program - www.energystar.gov/index.cfm?c=cfls.pr_cfls

Hot Water Heaters

Solar Water Heating

Plug Loads

Wind
AWEA Web Site – http://www.awea.org
National Wind Coordinating Collaborative – http:www.nationalwind.org
Utility Wind Interest Group site: http://www.uwig.org
WPA Web Site – http://www.windpoweringamerica.gov
Homepower Web Site: http://homepower.com
Windustry Project: http://www.windustry.com

Solar
NREL – http://www.nrel.gov/rredc/
Firstlook – http://firstlook.3tiergroup.com

State and Utility Incentives and Utility Policies - http://www.dsireusa.org