An Update on Q Fever: Current Epidemiology

CDR Alicia Anderson, DVM, MPH
Rickettsial Zoonoses Branch
National Center for Vector-Borne and Zoonotic Diseases
Centers for Disease Control and Prevention
Background

- Caused by *Coxiella burnetii*
 - “Query” Fever
 - Cattle, sheep, goats are primary reservoirs
 - Shed in birthing fluids, excreta, milk
- Humans infected via inhalation
- Nationally notifiable disease since 2000
- U.S. seroprevalence: 3.1%
Acute Q Fever

- 3 common manifestations
 - Flu-like, self limiting
 - Pneumonia (30-60%)
 - Hepatitis
- Death: 1-2%
- Treatment: Doxycycline
- Post-Q fever fatigue syndrome affecting 15-20%
Chronic Q Fever

• 1-5% of those infected

• High mortality in untreated cases (60%)

• High risk groups: pregnant women, immunocompromised, existing valvulopathy

• Endocarditis
Q Fever National Surveillance

• CDC case definition revised in 2008 by Council of State and Territorial Epidemiologists
 – Separate designations for acute and chronic infection
• Confirmed case by IFA
 – Clinically compatible illness w/4X rise in IgG Phase II by IFA
• Laboratory supportive case: IFA IgG Phase II antibody titer ≥ 1:128
U.S. Q Fever Cases and Incidence 2000-2008

Year

Number of Cases

0 20 40 60 80 100 120 140 160

Incidence per million persons

0 0.1 0.2 0.3 0.4 0.5 0.6

Number

Incidence

Year

Number of Cases

Incidence per million persons

0 0.1 0.2 0.3 0.4 0.5 0.6

Number

Incidence
Challenges in Detection

• Q fever typically thought of as an occupational disease
• Organism may travel for up to 11 miles on wind currents
• CDC surveillance data:
 - 76% of acute Q fever cases are NOT in high risk occupations
 - 62% of acute Q fever cases do NOT report contact with livestock
Netherlands Q Fever Outbreak

• Largest Q fever outbreak ever reported with over 3,000 cases since 2007

• Previous baseline of Q fever cases was 17/year

• Pneumonia is the most common presentation for illness (inpatient and outpatient)
Unique Clone of *Coxiella burnettii* causing severe Q fever, French Guiana

- 37 cases/100,000 in 1996
- 150 cases /100,000 in 2005
- 24% of all community acquired pneumonia
- Severe disease, endocarditis,
- Higher rates of organism recovery than in France
- Source unknown
- Unique genotype – MST 17
 - Related to genotype that contains QpH1 plasmid causes severe clinical disease in animal models

Mahamat et al. Emerging Infectious Diseases. 2013, 29(7) 1102-1104
Coxiella in Alaska

- Reportable to SOE and OSV since 2007
 - One confirmed human case (imported) none locally acquired
 - No reported clinical cases domestic livestock
 - Antibodies detected in terrestrial wildlife (Caribou 25%)
 - Detected in marine mammals-Northern Fur Seals St Paul 2010
 - 5/146 (3%) placentas positive by immunohistochemical staining
 - 109/146 (75%) positive by PCR
- Are residents infected?
- Is there clinical disease?
Coxiella in Alaska

• Test banked sera from residents of St Paul/St George 1980-2000 for antibodies to *C. burnettii* by EIA and IFA
 – Results:
 • 621 persons with sera 1980-2000
 • 76% were from St Paul
 • Age <1 to 91
 • 72 positive (12%) (≥1/64) (US National rate 3.7%)
Coxiella in Alaska

• Next Steps:
 – Establish active surveillance (with serology and treatment) of febrile cases seeking medical care
 – Conduct a contemporary study of seroprevalence
 – Conduct a “occupational” risk study
 – Test fur seal population for *Coxiella burnettii* (other infectious agents)