Alaska CIAP State Tier 1-10: Geohazard Evaluation & Geologic Mapping for Coastal Communities

Project Manager: Nicole Kinsman, Coastal Geologist www.dggs.alaska.gov/coast Alaska Forum on the Environment

February 12, 2015

Coastal Hazards Program at DGGS

- Program launched in 2011, initial funding from Coastal Impact Assistance Program
- Available to field coastal questions from stakeholders (~10-20 weekly requests)
- Program objectives:
 - Increase quality/quantity of coastal baseline data
 - Provide shoreline change and coastal inundation tools
 - Encourage/develop coastal management resources for an Alaskan audience

What are

COASTAL GEOHAZARDS IN ALASKA?

WHAT ARE COASTAL GEOHAZARDS IN ALASKA?

 \mathbf{O}

uui

Beach Erosion/Accretion, Slope Failure, Coastal Flooding, Tsunami, Ivu, Sea Level Change, Salt Spray...

Erosion Kivalina, AK	(Kinsman 2010) Storm Surge Shaktoolik, AK July 2011 (Kinsman 2011)			Ivu (Ice Push) Nome, AK - May 2004 (Tom Busch 2004)			Fsunami Damage Kodiak, AK – March 196	4 (noaa.gov)
Coas	tal proc	esses ha	ive highly v	ariable	2:	- Inte - Frec - Spat	nsities quencies tial Extents	
Proc	Processes may be <u>catastrop</u> • Storm Su • Tsunami			ohic Irge	or	 grad Pern Grav ATV 	ual nafrost mel rel mining	t

COASTAL STORM DISASTERS

COASTAL STORM DISASTERS

ARE THERE NOT BETTER COASTAL MAP PRODUCTS IN ALASKA?

Why

COASTAL VULNERABILITY MAPPING – ALASKA CHALLENGES

Shaktoolik, AK

(Kinsman 2011)

San Diego, CA (www.oceanlight.com)

- Existing methodologies designed for densely populated coastlines
- Unique hazards & different emphasis
- Longest coastline in the United States very diverse coastal environments
- Extremely limited baseline data
 - Water levels, historic event record, aerial imagery, topography & bathymetry
- Coastal economics are fundamentally different

COASTAL GEOHAZARD DATA

Qualitative \rightarrow Quantitative Observations

Baseline Data is the Foundation for Evaluating Change

Rapid Errsion is occurring

38.2 ft/year of Erosion

Alaska Coastal Populations Vulnerable to Flooding and Erosion

BASELINE DATA COLLECTION

What has shaped the coast? What is shaping the coast now?

Benefits of documenting coastal processes in detail:

- Map areas of vulnerability
- Establish baselines to monitor changes in event timing, frequency and magnitude
- Design effective mitigation strategies
- Understand how modifications will influence the coastal environment
- Improve mathematical models that predict hazard impacts
- Provide forecasters with known values to test accuracy

Coastal Landform Characterization

Sediment Sources and Grain size

Inlet Bathymetry and Dynamics

Distribution of Overwash Deposits (and erosion features)

EXAMPLE: New Aerial Imagery and Elevation Models

- Coastal imagery:
 - Oblique and orthoimages
 - Historical and contemporary
- Elevation data:
 - Topography
 - Nearshore bathymetry
 - Ground control
 - Tidal datums

Archive lidar release, Unalakleet (2005) – <u>DGGS Raw Data File 2014-2</u>

Portable sonar work with Dylan Iya, Savoonga (2013)

EXAMPLE: Coastal Profiles (Snapshots of Beach Elevation)

EXAMPLE: Mapping Shoreline Positions

EXAMPLE: Water Level Measurements

Measured limit of wave run-up – <u>DGGS Report of Investigations 2012-2</u>

New & Upcoming

COASTAL MAPS AND RESOURCES

Alaska Dhuision of Geological & Geophysical Narways MIRCELLINGOUR FORMULATION 314 COLOR-INDEXED ELEVATION MAPS FOR FLOOD-VULNERABLE COLATAC COMMUNITIES IN WESTERN ALASKA by Timethy 3: charter, Xicale Jon ma, and Alaree Fan

And the set of the set

- Resource to improve 2-way communication about flood impacts
- Pilot project in 5 locations: UNK, SKK, GLV, SHH and KVL
- A stopgap tool on the way to flood maps

Interactive Mapping Tool for Coastal Elevation Profiles

myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees

Alaska Coastal Profile Tool (ACPT) Alaska Division of Geological & Geophysical Surveys

State of Alaska > Natural Resources > Geological & Geophysical Surveys > Maps > ACPT

This interactive tool enables access to beach elevation profile measurements collected throughout Alaska since the 1960s. Users can explore profile measurements collected by DGGS and others as time-series plots and location-based images of the shoreface environment. The map has been designed to accommodate datasets collected with differing techniques, including differential leveling, survey-grade GPS or extraction from lidar-derived digital elevation models.

Lines on the overview map depict the position and shape of the most recent data at each coastal profile; remeasured profiles are displayed as coincident for comparative purposes, however, the precise location of past measurements may vary due to differing collection methods.

Source data for this application is available for download. For complete citation information, contributor and funding acknowledgements and metadata, please see http://www.dqgs.alaska.gov/pubs/id/27359

Alaska Coastal Profile Tool: <u>maps.dggs.alaska.gov/acpt/</u>

Interactive Mapping Tool for Coastal Elevation Profiles

Shoreline Change and Projected Shoreline Position Maps

sion of Geological & Geophysical St

UPCOMING: Interactive Mapping Tool for Shoreline Change

This interactive tool displays historic and predicted shoreline position throughout Alaska. Users can explore the coasts of the state to see where shoreline has been in the past, and where it will be in the future. Historic shoreline positions were determined by looking at aerial photographs and satellite imagery dating back to the 1950s. Using the Digital Shoreline Assessment Tool (DSAS), rates of shoreline change were calculated. These rates were then used to project shoreline positions. Each predicted shoreline has an uncertainty, shown by a collar of dashed lines, that represents a 90 percent confidence that the shoreline will be within that area for that year. Currently, historic shoreline data are available for download but predicted shoreline positions are not.

THE STATE WAY

12.0

RESIDENT INVOLVEMENT

Increase Local Observation Capabilities

High School students collecting coastal elevation data on Cannon Beach in Yakutat, Alaska (2014)

Increase Local Observation Capabilities

Increase Local Observation Capabilities

Stake Erosion Monitoring in Combination with Time-Lapse Camera*

Water Level Monitoring with Time-Lapse Camera*

2015 and beyond

Baseline measurements (2-3 places on Y-K Delta, post-storm) intern?

New western Alaska aerial image & elevation collection

Expand water level monitoring network

Build a toolbox of resources and support local monitoring efforts

